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2.1 Introduction

If I needed to describe the distance between two cities, I could provide an answer consisting of
a single number in miles, kilometers, or some other unit of linear measurement. However, if I
were to describe how to travel from one city to another, I would have to provide more informa-
tion than just the distance between those two cities; I would also have to provide information
about the direction to travel, as well.
The kind of information that expresses a single dimension, such as linear distance, is called

a scalar quantity in mathematics. Scalar numbers are the kind of numbers you’ve used in most
all of your mathematical applications so far. The voltage produced by a battery, for example,
is a scalar quantity. So is the resistance of a piece of wire (ohms), or the current through it
(amps).
However, when we begin to analyze alternating current circuits, we find that quantities

of voltage, current, and even resistance (called impedance in AC) are not the familiar one-
dimensional quantities we’re used to measuring in DC circuits. Rather, these quantities, be-
cause they’re dynamic (alternating in direction and amplitude), possess other dimensions that
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28 CHAPTER 2. COMPLEX NUMBERS

must be taken into account. Frequency and phase shift are two of these dimensions that come
into play. Even with relatively simple AC circuits, where we’re only dealing with a single fre-
quency, we still have the dimension of phase shift to contend with in addition to the amplitude.
In order to successfully analyze AC circuits, we need to work with mathematical objects

and techniques capable of representing these multi-dimensional quantities. Here is where
we need to abandon scalar numbers for something better suited: complex numbers. Just like
the example of giving directions from one city to another, AC quantities in a single-frequency
circuit have both amplitude (analogy: distance) and phase shift (analogy: direction). A complex
number is a single mathematical quantity able to express these two dimensions of amplitude
and phase shift at once.
Complex numbers are easier to grasp when they’re represented graphically. If I draw a line

with a certain length (magnitude) and angle (direction), I have a graphic representation of a
complex number which is commonly known in physics as a vector: (Figure 2.1)

length = 7
angle = 0 degrees

length = 10
angle = 180 degrees

length = 5
angle = 90 degrees

length = 4
angle = 270 degrees

(-90 degrees)

length = 5.66
angle = 45 degrees

length = 9.43

(-57.99 degrees)
angle = 302.01 degrees

Figure 2.1: A vector has both magnitude and direction.

Like distances and directions on a map, there must be some common frame of reference for
angle figures to have any meaning. In this case, directly right is considered to be 0o, and angles
are counted in a positive direction going counter-clockwise: (Figure 2.2)
The idea of representing a number in graphical form is nothing new. We all learned this in

grade school with the “number line:” (Figure 2.3)
We even learned how addition and subtraction works by seeing how lengths (magnitudes)

stacked up to give a final answer: (Figure 2.4)
Later, we learned that there were ways to designate the values between the whole numbers

marked on the line. These were fractional or decimal quantities: (Figure 2.5)
Later yet we learned that the number line could extend to the left of zero as well: (Fig-

ure 2.6)
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0o

90o

180o

270o (-90o)

The vector "compass"

Figure 2.2: The vector compass

0 1 2 3 4 5 6 7 8 9 10

. . .

Figure 2.3: Number line.

0 1 2 3 4 5 6 7 8 9 10

. . .
5 3

8

5 + 3 = 8

Figure 2.4: Addition on a “number line”.

0 1 2 3 4 5 6 7 8 9 10

. . .

3-1/2 or 3.5

Figure 2.5: Locating a fraction on the “number line”
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0 1 2 3 4 5

. . .. . .

-1-2-3-4-5

Figure 2.6: “Number line” shows both positive and negative numbers.

These fields of numbers (whole, integer, rational, irrational, real, etc.) learned in grade
school share a common trait: they’re all one-dimensional. The straightness of the number
line illustrates this graphically. You can move up or down the number line, but all “motion”
along that line is restricted to a single axis (horizontal). One-dimensional, scalar numbers are
perfectly adequate for counting beads, representing weight, or measuring DC battery voltage,
but they fall short of being able to represent something more complex like the distance and
direction between two cities, or the amplitude and phase of an AC waveform. To represent
these kinds of quantities, we need multidimensional representations. In other words, we need
a number line that can point in different directions, and that’s exactly what a vector is.

• REVIEW:

• A scalar number is the type of mathematical object that people are used to using in
everyday life: a one-dimensional quantity like temperature, length, weight, etc.

• A complex number is a mathematical quantity representing two dimensions of magnitude
and direction.

• A vector is a graphical representation of a complex number. It looks like an arrow, with
a starting point, a tip, a definite length, and a definite direction. Sometimes the word
phasor is used in electrical applications where the angle of the vector represents phase
shift between waveforms.

2.2 Vectors and AC waveforms

OK, so how exactly can we represent AC quantities of voltage or current in the form of a vector?
The length of the vector represents the magnitude (or amplitude) of the waveform, like this:
(Figure 2.7)
The greater the amplitude of the waveform, the greater the length of its corresponding

vector. The angle of the vector, however, represents the phase shift in degrees between the
waveform in question and another waveform acting as a “reference” in time. Usually, when the
phase of a waveform in a circuit is expressed, it is referenced to the power supply voltage wave-
form (arbitrarily stated to be “at” 0o). Remember that phase is always a relative measurement
between two waveforms rather than an absolute property. (Figure 2.8) (Figure 2.9)

The greater the phase shift in degrees between two waveforms, the greater the angle dif-
ference between the corresponding vectors. Being a relative measurement, like voltage, phase
shift (vector angle) only has meaning in reference to some standard waveform. Generally this
“reference” waveform is the main AC power supply voltage in the circuit. If there is more than
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Amplitude
Length

Waveform Vector representation

Figure 2.7: Vector length represents AC voltage magnitude.
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Figure 2.8: Vector angle is the phase with respect to another waveform.
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BA
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phase shift

angle

Figure 2.9: Phase shift between waves and vector phase angle

one AC voltage source, then one of those sources is arbitrarily chosen to be the phase reference
for all other measurements in the circuit.
This concept of a reference point is not unlike that of the “ground” point in a circuit for

the benefit of voltage reference. With a clearly defined point in the circuit declared to be
“ground,” it becomes possible to talk about voltage “on” or “at” single points in a circuit, being
understood that those voltages (always relative between two points) are referenced to “ground.”
Correspondingly, with a clearly defined point of reference for phase it becomes possible to speak
of voltages and currents in an AC circuit having definite phase angles. For example, if the
current in an AC circuit is described as “24.3 milliamps at -64 degrees,” it means that the
current waveform has an amplitude of 24.3 mA, and it lags 64o behind the reference waveform,
usually assumed to be the main source voltage waveform.

• REVIEW:

• When used to describe an AC quantity, the length of a vector represents the amplitude
of the wave while the angle of a vector represents the phase angle of the wave relative to
some other (reference) waveform.

2.3 Simple vector addition

Remember that vectors are mathematical objects just like numbers on a number line: they
can be added, subtracted, multiplied, and divided. Addition is perhaps the easiest vector op-
eration to visualize, so we’ll begin with that. If vectors with common angles are added, their
magnitudes (lengths) add up just like regular scalar quantities: (Figure 2.10)

length = 6

angle = 0 degrees

length = 8

angle = 0 degrees

total length = 6 + 8 = 14

angle = 0 degrees

Figure 2.10: Vector magnitudes add like scalars for a common angle.

Similarly, if AC voltage sources with the same phase angle are connected together in series,
their voltages add just as you might expect with DC batteries: (Figure 2.11)
Please note the (+) and (-) polarity marks next to the leads of the two AC sources. Even

though we know AC doesn’t have “polarity” in the same sense that DC does, these marks are
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0 deg 0 deg

0 deg

- + - +

- +

- + - +

- +

6 V 8 V

14 V 14 V

6 V 8 V

Figure 2.11: “In phase” AC voltages add like DC battery voltages.

essential to knowing how to reference the given phase angles of the voltages. This will become
more apparent in the next example.
If vectors directly opposing each other (180o out of phase) are added together, their magni-

tudes (lengths) subtract just like positive and negative scalar quantities subtract when added:
(Figure 2.12)

length = 6 angle = 0 degrees

length = 8

total length = 6 - 8 = -2 at 0 degrees

angle = 180 degrees

or   2 at 180 degrees

Figure 2.12: Directly opposing vector magnitudes subtract.

Similarly, if opposing AC voltage sources are connected in series, their voltages subtract as
you might expect with DC batteries connected in an opposing fashion: (Figure 2.13)
Determining whether or not these voltage sources are opposing each other requires an ex-

amination of their polarity markings and their phase angles. Notice how the polarity markings
in the above diagram seem to indicate additive voltages (from left to right, we see - and + on
the 6 volt source, - and + on the 8 volt source). Even though these polarity markings would
normally indicate an additive effect in a DC circuit (the two voltages working together to pro-
duce a greater total voltage), in this AC circuit they’re actually pushing in opposite directions
because one of those voltages has a phase angle of 0o and the other a phase angle of 180o. The
result, of course, is a total voltage of 2 volts.
We could have just as well shown the opposing voltages subtracting in series like this:

(Figure 2.14)
Note how the polarities appear to be opposed to each other now, due to the reversal of

wire connections on the 8 volt source. Since both sources are described as having equal phase
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0 deg
- + - +

- +

- + -+

-+

180 deg

180 deg

6 V 8 V
6 V 8 V

2 V
2 V

Figure 2.13: Opposing AC voltages subtract like opposing battery voltages.
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- + - +

- +

- +
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2 V
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0 deg

- +

Figure 2.14: Opposing voltages in spite of equal phase angles.
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angles (0o), they truly are opposed to one another, and the overall effect is the same as the
former scenario with “additive” polarities and differing phase angles: a total voltage of only 2
volts. (Figure 2.15)

0 deg
- + -+

- +

180 deg

0 deg

0 deg
+ -

6 V 8 V

2 V

2 V

Figure 2.15: Just as there are two ways to express the phase of the sources, there are two ways
to express the resultant their sum.

The resultant voltage can be expressed in two different ways: 2 volts at 180o with the (-)
symbol on the left and the (+) symbol on the right, or 2 volts at 0o with the (+) symbol on the
left and the (-) symbol on the right. A reversal of wires from an AC voltage source is the same
as phase-shifting that source by 180o. (Figure 2.16)

8 V
180 deg
- +

8 V

-+
0 degThese voltage sources

are equivalent!

Figure 2.16: Example of equivalent voltage sources.

2.4 Complex vector addition

If vectors with uncommon angles are added, their magnitudes (lengths) add up quite differ-
ently than that of scalar magnitudes: (Figure 2.17)
If two AC voltages – 90o out of phase – are added together by being connected in series, their

voltage magnitudes do not directly add or subtract as with scalar voltages in DC. Instead, these
voltage quantities are complex quantities, and just like the above vectors, which add up in a
trigonometric fashion, a 6 volt source at 0o added to an 8 volt source at 90o results in 10 volts
at a phase angle of 53.13o: (Figure 2.18)
Compared to DC circuit analysis, this is very strange indeed. Note that it is possible to

obtain voltmeter indications of 6 and 8 volts, respectively, across the two AC voltage sources,



36 CHAPTER 2. COMPLEX NUMBERS

length = 6
angle = 0 degrees

length = 8
angle = 90 degrees

length = 10
angle = 53.13

degrees

6 at 0 degrees

8 at 90 degrees+

10 at 53.13 degrees

Vector addition

Figure 2.17: Vector magnitudes do not directly add for unequal angles.

0 deg
- + - +

90 deg

53.13 deg
- +

6 V 8 V

10 V

Figure 2.18: The 6V and 8V sources add to 10V with the help of trigonometry.
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yet only read 10 volts for a total voltage!
There is no suitable DC analogy for what we’re seeing here with two AC voltages slightly

out of phase. DC voltages can only directly aid or directly oppose, with nothing in between.
With AC, two voltages can be aiding or opposing one another to any degree between fully-
aiding and fully-opposing, inclusive. Without the use of vector (complex number) notation to
describe AC quantities, it would be very difficult to perform mathematical calculations for AC
circuit analysis.
In the next section, we’ll learn how to represent vector quantities in symbolic rather than

graphical form. Vector and triangle diagrams suffice to illustrate the general concept, but more
precise methods of symbolism must be used if any serious calculations are to be performed on
these quantities.

• REVIEW:

• DC voltages can only either directly aid or directly oppose each other when connected in
series. AC voltages may aid or oppose to any degree depending on the phase shift between
them.

2.5 Polar and rectangular notation

In order to work with these complex numbers without drawing vectors, we first need some kind
of standard mathematical notation. There are two basic forms of complex number notation:
polar and rectangular.
Polar form is where a complex number is denoted by the length (otherwise known as the

magnitude, absolute value, or modulus) and the angle of its vector (usually denoted by an
angle symbol that looks like this: 6 ). To use the map analogy, polar notation for the vector
from New York City to San Diego would be something like “2400 miles, southwest.” Here are
two examples of vectors and their polar notations: (Figure 2.19)

8.49 ∠  45o

8.06 ∠  -29.74o

(8.06 ∠  330.26o)

5.39 ∠  158.2o
7.81 ∠  230.19o

(7.81 ∠  -129.81o)

Note: the proper notation for designating a vector’s angle
is this symbol: ∠

Figure 2.19: Vectors with polar notations.
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Standard orientation for vector angles in AC circuit calculations defines 0o as being to the
right (horizontal), making 90o straight up, 180o to the left, and 270o straight down. Please note
that vectors angled “down” can have angles represented in polar form as positive numbers in
excess of 180, or negative numbers less than 180. For example, a vector angled 6 270o (straight
down) can also be said to have an angle of -90o. (Figure 2.20) The above vector on the right
(7.81 6 230.19o) can also be denoted as 7.81 6 -129.81o.

0o

90o

180o

270o (-90o)

The vector "compass"

Figure 2.20: The vector compass

Rectangular form, on the other hand, is where a complex number is denoted by its re-
spective horizontal and vertical components. In essence, the angled vector is taken to be the
hypotenuse of a right triangle, described by the lengths of the adjacent and opposite sides.
Rather than describing a vector’s length and direction by denoting magnitude and angle, it is
described in terms of “how far left/right” and “how far up/down.”
These two dimensional figures (horizontal and vertical) are symbolized by two numerical

figures. In order to distinguish the horizontal and vertical dimensions from each other, the
vertical is prefixed with a lower-case “i” (in pure mathematics) or “j” (in electronics). These
lower-case letters do not represent a physical variable (such as instantaneous current, also
symbolized by a lower-case letter “i”), but rather are mathematical operators used to distin-
guish the vector’s vertical component from its horizontal component. As a complete complex
number, the horizontal and vertical quantities are written as a sum: (Figure 2.21)
The horizontal component is referred to as the real component, since that dimension is

compatible with normal, scalar (“real”) numbers. The vertical component is referred to as the
imaginary component, since that dimension lies in a different direction, totally alien to the
scale of the real numbers. (Figure 2.22)
The “real” axis of the graph corresponds to the familiar number line we saw earlier: the one

with both positive and negative values on it. The “imaginary” axis of the graph corresponds to
another number line situated at 90o to the “real” one. Vectors being two-dimensional things,
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4 + j4
"4 right and 4 up"

4 + j0

"4 right and 0 up/down"

4 - j4
"4 right and 4 down"

-4 + j0

"4 left and 0 up/down"

-4 + j4
"4 left and 4 up"

-4 -j4

"4 left and 4 down"

Figure 2.21: In “rectangular” form the vector’s length and direction are denoted in terms of its
horizontal and vertical span, the first number representing the the horizontal (“real”) and the
second number (with the “j” prefix) representing the vertical (“imaginary”) dimensions.

+j

-j

+ "imaginary"

- "imaginary"

+ "real"- "real"

Figure 2.22: Vector compass showing real and imaginary axes



40 CHAPTER 2. COMPLEX NUMBERS

we must have a two-dimensional “map” upon which to express them, thus the two number
lines perpendicular to each other: (Figure 2.23)

0
1 2 3 4 5

. . .. . .

-1-2-3-4-5

1

2

3

4

5

-1

-2

-3

-4

-5

"real" number line

"imaginary"
number line

Figure 2.23: Vector compass with real and imaginary (“j”) number lines.

Either method of notation is valid for complex numbers. The primary reason for having
two methods of notation is for ease of longhand calculation, rectangular form lending itself to
addition and subtraction, and polar form lending itself to multiplication and division.

Conversion between the two notational forms involves simple trigonometry. To convert from
polar to rectangular, find the real component by multiplying the polar magnitude by the cosine
of the angle, and the imaginary component by multiplying the polar magnitude by the sine of
the angle. This may be understood more readily by drawing the quantities as sides of a right
triangle, the hypotenuse of the triangle representing the vector itself (its length and angle
with respect to the horizontal constituting the polar form), the horizontal and vertical sides
representing the “real” and “imaginary” rectangular components, respectively: (Figure 2.24)
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+j3

+4

length = 5

angle =
36.87o

Figure 2.24: Magnitude vector in terms of real (4) and imaginary (j3) components.

(polar form)

(real component)

(imaginary component)

4 + j3 (rectangular form)

(5)(cos 36.87o) = 4

(5)(sin 36.87o) = 3

5 ∠  36.87o

To convert from rectangular to polar, find the polar magnitude through the use of the
Pythagorean Theorem (the polar magnitude is the hypotenuse of a right triangle, and the real
and imaginary components are the adjacent and opposite sides, respectively), and the angle by
taking the arctangent of the imaginary component divided by the real component:

4 + j3 (rectangular form)

c = a2 + b2 (pythagorean theorem)

polar magnitude = 42 + 32

polar magnitude = 5

polar angle = arctan
3

4

polar angle =

(polar form)

36.87o

5 ∠  36.87o

• REVIEW:

• Polar notation denotes a complex number in terms of its vector’s length and angular
direction from the starting point. Example: fly 45 miles 6 203o (West by Southwest).
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• Rectangular notation denotes a complex number in terms of its horizontal and vertical
dimensions. Example: drive 41 miles West, then turn and drive 18 miles South.

• In rectangular notation, the first quantity is the “real” component (horizontal dimension
of vector) and the second quantity is the “imaginary” component (vertical dimension of
vector). The imaginary component is preceded by a lower-case “j,” sometimes called the j
operator.

• Both polar and rectangular forms of notation for a complex number can be related graph-
ically in the form of a right triangle, with the hypotenuse representing the vector itself
(polar form: hypotenuse length = magnitude; angle with respect to horizontal side = an-
gle), the horizontal side representing the rectangular “real” component, and the vertical
side representing the rectangular “imaginary” component.

2.6 Complex number arithmetic

Since complex numbers are legitimate mathematical entities, just like scalar numbers, they
can be added, subtracted, multiplied, divided, squared, inverted, and such, just like any other
kind of number. Some scientific calculators are programmed to directly perform these opera-
tions on two or more complex numbers, but these operations can also be done “by hand.” This
section will show you how the basic operations are performed. It is highly recommended that
you equip yourself with a scientific calculator capable of performing arithmetic functions easily
on complex numbers. It will make your study of AC circuit much more pleasant than if you’re
forced to do all calculations the longer way.
Addition and subtraction with complex numbers in rectangular form is easy. For addition,

simply add up the real components of the complex numbers to determine the real component
of the sum, and add up the imaginary components of the complex numbers to determine the
imaginary component of the sum:

2 + j5
4 - j3+

6 + j2

175 - j34
80 - j15+

255 - j49

-36 + j10
20 + j82+

-16 + j92

When subtracting complex numbers in rectangular form, simply subtract the real compo-
nent of the second complex number from the real component of the first to arrive at the real
component of the difference, and subtract the imaginary component of the second complex
number from the imaginary component of the first to arrive the imaginary component of the
difference:

2 + j5
(4 - j3)

175 - j34
(80 - j15)

-36 + j10
(20 + j82)- - -

-2 + j8 95 - j19 -56 - j72

For longhand multiplication and division, polar is the favored notation to work with. When
multiplying complex numbers in polar form, simply multiply the polar magnitudes of the com-
plex numbers to determine the polar magnitude of the product, and add the angles of the
complex numbers to determine the angle of the product:
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(35 ∠  65o)(10 ∠  -12o) = 350 ∠  53o

(124 ∠  250o)(11 ∠  100o) = 1364 ∠  -10o

or
1364 ∠  350o

(3 ∠  30o)(5 ∠  -30o) = 15 ∠  0o

Division of polar-form complex numbers is also easy: simply divide the polar magnitude
of the first complex number by the polar magnitude of the second complex number to arrive
at the polar magnitude of the quotient, and subtract the angle of the second complex number
from the angle of the first complex number to arrive at the angle of the quotient:

35 ∠  65o

10 ∠  -12o =

124 ∠  250o

11 ∠  100o =

3 ∠  30o

5 ∠  -30o =

3.5 ∠ 77o

11.273 ∠  150o

0.6 ∠  60o

To obtain the reciprocal, or “invert” (1/x), a complex number, simply divide the number (in
polar form) into a scalar value of 1, which is nothing more than a complex number with no
imaginary component (angle = 0):

1
= =

1
= =

1
= =

1 ∠  0o

1 ∠  0o

1 ∠  0o

35 ∠  65o 35 ∠  65o

10 ∠  -12o 10 ∠  -12o

0.0032 ∠  10o 0.0032 ∠  10o

0.02857 ∠  -65o

0.1 ∠  12o

312.5 ∠  -10o

These are the basic operations you will need to know in order to manipulate complex num-
bers in the analysis of AC circuits. Operations with complex numbers are by no means limited
just to addition, subtraction, multiplication, division, and inversion, however. Virtually any
arithmetic operation that can be done with scalar numbers can be done with complex num-
bers, including powers, roots, solving simultaneous equations with complex coefficients, and
even trigonometric functions (although this involves a whole new perspective in trigonometry
called hyperbolic functions which is well beyond the scope of this discussion). Be sure that
you’re familiar with the basic arithmetic operations of addition, subtraction, multiplication,
division, and inversion, and you’ll have little trouble with AC circuit analysis.

• REVIEW:
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• To add complex numbers in rectangular form, add the real components and add the imag-
inary components. Subtraction is similar.

• To multiply complex numbers in polar form, multiply the magnitudes and add the angles.
To divide, divide the magnitudes and subtract one angle from the other.

2.7 More on AC ”polarity”

Complex numbers are useful for AC circuit analysis because they provide a convenient method
of symbolically denoting phase shift between AC quantities like voltage and current. However,
for most people the equivalence between abstract vectors and real circuit quantities is not an
easy one to grasp. Earlier in this chapter we saw how AC voltage sources are given voltage
figures in complex form (magnitude and phase angle), as well as polarity markings. Being that
alternating current has no set “polarity” as direct current does, these polarity markings and
their relationship to phase angle tends to be confusing. This section is written in the attempt
to clarify some of these issues.

Voltage is an inherently relative quantity. When we measure a voltage, we have a choice in
how we connect a voltmeter or other voltage-measuring instrument to the source of voltage, as
there are two points between which the voltage exists, and two test leads on the instrument
with which to make connection. In DC circuits, we denote the polarity of voltage sources and
voltage drops explicitly, using “+” and “-” symbols, and use color-coded meter test leads (red
and black). If a digital voltmeter indicates a negative DC voltage, we know that its test leads
are connected “backward” to the voltage (red lead connected to the “-” and black lead to the
“+”).

Batteries have their polarity designated by way of intrinsic symbology: the short-line side
of a battery is always the negative (-) side and the long-line side always the positive (+): (Fig-
ure 2.25)

6 V

+

-

Figure 2.25: Conventional battery polarity.

Although it would be mathematically correct to represent a battery’s voltage as a negative
figure with reversed polarity markings, it would be decidedly unconventional: (Figure 2.26)

+

-

-6 V

Figure 2.26: Decidedly unconventional polarity marking.
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Interpreting such notation might be easier if the “+” and “-” polarity markings were viewed
as reference points for voltmeter test leads, the “+” meaning “red” and the “-” meaning “black.”
A voltmeter connected to the above battery with red lead to the bottom terminal and black
lead to the top terminal would indeed indicate a negative voltage (-6 volts). Actually, this
form of notation and interpretation is not as unusual as you might think: it is commonly
encountered in problems of DC network analysis where “+” and “-” polarity marks are initially
drawn according to educated guess, and later interpreted as correct or “backward” according
to the mathematical sign of the figure calculated.
In AC circuits, though, we don’t deal with “negative” quantities of voltage. Instead, we

describe to what degree one voltage aids or opposes another by phase: the time-shift between
two waveforms. We never describe an AC voltage as being negative in sign, because the facility
of polar notation allows for vectors pointing in an opposite direction. If one AC voltage directly
opposes another AC voltage, we simply say that one is 180o out of phase with the other.
Still, voltage is relative between two points, and we have a choice in how we might connect

a voltage-measuring instrument between those two points. The mathematical sign of a DC
voltmeter’s reading has meaning only in the context of its test lead connections: which terminal
the red lead is touching, and which terminal the black lead is touching. Likewise, the phase
angle of an AC voltage has meaning only in the context of knowing which of the two points
is considered the “reference” point. Because of this fact, “+” and “-” polarity marks are often
placed by the terminals of an AC voltage in schematic diagrams to give the stated phase angle
a frame of reference.
Let’s review these principles with some graphical aids. First, the principle of relating test

lead connections to the mathematical sign of a DC voltmeter indication: (Figure 2.27)
The mathematical sign of a digital DC voltmeter’s display has meaning only in the context

of its test lead connections. Consider the use of a DC voltmeter in determining whether or
not two DC voltage sources are aiding or opposing each other, assuming that both sources
are unlabeled as to their polarities. Using the voltmeter to measure across the first source:
(Figure 2.28)
This first measurement of +24 across the left-hand voltage source tells us that the black

lead of the meter really is touching the negative side of voltage source #1, and the red lead of
the meter really is touching the positive. Thus, we know source #1 is a battery facing in this
orientation: (Figure 2.29)
Measuring the other unknown voltage source: (Figure 2.30)
This second voltmeter reading, however, is a negative (-) 17 volts, which tells us that the

black test lead is actually touching the positive side of voltage source #2, while the red test
lead is actually touching the negative. Thus, we know that source #2 is a battery facing in the
opposite direction: (Figure 2.31)
It should be obvious to any experienced student of DC electricity that these two batteries

are opposing one another. By definition, opposing voltages subtract from one another, so we
subtract 17 volts from 24 volts to obtain the total voltage across the two: 7 volts.
We could, however, draw the two sources as nondescript boxes, labeled with the exact volt-

age figures obtained by the voltmeter, the polarity marks indicating voltmeter test lead place-
ment: (Figure 2.32)
According to this diagram, the polarity marks (which indicate meter test lead placement)

indicate the sources aiding each other. By definition, aiding voltage sources add with one an-
other to form the total voltage, so we add 24 volts to -17 volts to obtain 7 volts: still the correct
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COMA

V

V A

A
OFF

6 V

COMA

V

V A

A
OFF

6 V

Figure 2.27: Test lead colors provide a frame of reference for interpreting the sign (+ or -) of
the meter’s indication.

COMA

V

V A

A
OFF

Source 1 Source 2

Total voltage?

The meter tells us +24 volts

Figure 2.28: (+) Reading indicates black is (-), red is (+).
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Source 1 Source 2

Total voltage?

24 V

Figure 2.29: 24V source is polarized (-) to (+).

COMA

V

V A

A
OFF

The meter tells us -17 volts

Source 1 Source 2

Total voltage?

Figure 2.30: (-) Reading indicates black is (+), red is (-).

Source 1 Source 2

24 V 17 V

Total voltage = 7 V- +

Figure 2.31: 17V source is polarized (+) to (-)

Source 1 Source 2

24 V -17 V
- + - +

Figure 2.32: Voltmeter readings as read from meters.
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answer. If we let the polarity markings guide our decision to either add or subtract voltage fig-
ures – whether those polarity markings represent the true polarity or just the meter test lead
orientation – and include the mathematical signs of those voltage figures in our calculations,
the result will always be correct. Again, the polarity markings serve as frames of reference to
place the voltage figures’ mathematical signs in proper context.

The same is true for AC voltages, except that phase angle substitutes for mathematical
sign. In order to relate multiple AC voltages at different phase angles to each other, we need
polarity markings to provide frames of reference for those voltages’ phase angles. (Figure 2.33)

Take for example the following circuit:

10 V ∠  0o 6 V ∠  45o

- + - +

14.861 V ∠  16.59o

Figure 2.33: Phase angle substitutes for ± sign.

The polarity markings show these two voltage sources aiding each other, so to determine
the total voltage across the resistor we must add the voltage figures of 10 V 6 0o and 6 V 6 45o

together to obtain 14.861 V 6 16.59o. However, it would be perfectly acceptable to represent
the 6 volt source as 6 V 6 225o, with a reversed set of polarity markings, and still arrive at the
same total voltage: (Figure 2.34)

10 V ∠  0o

- + -+
6 V ∠  225o

14.861 V ∠  16.59o

Figure 2.34: Reversing the voltmeter leads on the 6V source changes the phase angle by 180o.

6 V 6 45o with negative on the left and positive on the right is exactly the same as 6 V
6 225o with positive on the left and negative on the right: the reversal of polarity markings
perfectly complements the addition of 180o to the phase angle designation: (Figure 2.35)

Unlike DC voltage sources, whose symbols intrinsically define polarity by means of short
and long lines, AC voltage symbols have no intrinsic polarity marking. Therefore, any polarity
marks must be included as additional symbols on the diagram, and there is no one “correct”
way in which to place them. They must, however, correlate with the given phase angle to
represent the true phase relationship of that voltage with other voltages in the circuit.
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6 V ∠  45o

- +

. . . is equivalent to . . . 

-+
6 V ∠  225o

Figure 2.35: Reversing polarity adds 180oto phase angle

• REVIEW:

• Polarity markings are sometimes given to AC voltages in circuit schematics in order to
provide a frame of reference for their phase angles.

2.8 Some examples with AC circuits

Let’s connect three AC voltage sources in series and use complex numbers to determine addi-
tive voltages. All the rules and laws learned in the study of DC circuits apply to AC circuits
as well (Ohm’s Law, Kirchhoff ’s Laws, network analysis methods), with the exception of power
calculations (Joule’s Law). The only qualification is that all variables must be expressed in
complex form, taking into account phase as well as magnitude, and all voltages and currents
must be of the same frequency (in order that their phase relationships remain constant). (Fig-
ure 2.36)

load

+

-

-

+

-

+

E1

E2

E3

22 V ∠  -64o

12 V ∠  35o

15 V ∠  0o

Figure 2.36: KVL allows addition of complex voltages.

The polarity marks for all three voltage sources are oriented in such a way that their stated
voltages should add to make the total voltage across the load resistor. Notice that although
magnitude and phase angle is given for each AC voltage source, no frequency value is specified.
If this is the case, it is assumed that all frequencies are equal, thus meeting our qualifications
for applying DC rules to an AC circuit (all figures given in complex form, all of the same
frequency). The setup of our equation to find total voltage appears as such:
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Etotal = E1 + E2 + E3

(22 V ∠  -64o) + (12 V ∠  35o) + (15 V ∠  0o)Etotal =

Graphically, the vectors add up as shown in Figure 2.37.

22 ∠  -64o

12 ∠  35o

15 ∠  0o

Figure 2.37: Graphic addition of vector voltages.

The sum of these vectors will be a resultant vector originating at the starting point for the
22 volt vector (dot at upper-left of diagram) and terminating at the ending point for the 15 volt
vector (arrow tip at the middle-right of the diagram): (Figure 2.38)

resultant vector

22 ∠  -64o

12 ∠  35o

15 ∠  0o

Figure 2.38: Resultant is equivalent to the vector sum of the three original voltages.

In order to determine what the resultant vector’s magnitude and angle are without re-
sorting to graphic images, we can convert each one of these polar-form complex numbers into
rectangular form and add. Remember, we’re adding these figures together because the polarity
marks for the three voltage sources are oriented in an additive manner:
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15 

9.8298

9.6442

+ j6.8829 V

- j19.7735 V

+ j0        V

+

34.4740 - j12.8906 V

15 V ∠  0o = 15 + j0 V

12 V ∠  35o = 9.8298 + j6.8829 V

22 V ∠  -64o = 9.6442 - j19.7735 V

In polar form, this equates to 36.8052 volts 6 -20.5018o. What this means in real terms
is that the voltage measured across these three voltage sources will be 36.8052 volts, lagging
the 15 volt (0o phase reference) by 20.5018o. A voltmeter connected across these points in
a real circuit would only indicate the polar magnitude of the voltage (36.8052 volts), not the
angle. An oscilloscope could be used to display two voltage waveforms and thus provide a phase
shift measurement, but not a voltmeter. The same principle holds true for AC ammeters: they
indicate the polar magnitude of the current, not the phase angle.
This is extremely important in relating calculated figures of voltage and current to real

circuits. Although rectangular notation is convenient for addition and subtraction, and was
indeed the final step in our sample problem here, it is not very applicable to practical measure-
ments. Rectangular figures must be converted to polar figures (specifically polar magnitude)
before they can be related to actual circuit measurements.
We can use SPICE to verify the accuracy of our results. In this test circuit, the 10 kΩ

resistor value is quite arbitrary. It’s there so that SPICE does not declare an open-circuit
error and abort analysis. Also, the choice of frequencies for the simulation (60 Hz) is quite
arbitrary, because resistors respond uniformly for all frequencies of AC voltage and current.
There are other components (notably capacitors and inductors) which do not respond uniformly
to different frequencies, but that is another subject! (Figure 2.39)

ac voltage addition
v1 1 0 ac 15 0 sin
v2 2 1 ac 12 35 sin
v3 3 2 ac 22 -64 sin
r1 3 0 10k
.ac lin 1 60 60 I’m using a frequency of 60 Hz
.print ac v(3,0) vp(3,0) as a default value
.end

freq v(3) vp(3)
6.000E+01 3.681E+01 -2.050E+01

Sure enough, we get a total voltage of 36.81 volts 6 -20.5o (with reference to the 15 volt
source, whose phase angle was arbitrarily stated at zero degrees so as to be the “reference”
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+

-

-

+

-

+

3

2

1

0

3

0

V1

V2

V3

R1 10 kΩ

22 V ∠  -64o

12 V ∠  35o

15 V ∠  0o

Figure 2.39: Spice circuit schematic.

waveform).
At first glance, this is counter-intuitive. How is it possible to obtain a total voltage of

just over 36 volts with 15 volt, 12 volt, and 22 volt supplies connected in series? With DC,
this would be impossible, as voltage figures will either directly add or subtract, depending on
polarity. But with AC, our “polarity” (phase shift) can vary anywhere in between full-aiding
and full-opposing, and this allows for such paradoxical summing.
What if we took the same circuit and reversed one of the supply’s connections? Its contri-

bution to the total voltage would then be the opposite of what it was before: (Figure 2.40)

load

+

-
-

+

-

+

E1

E2

E3

Polarity reversed on
source E2 !

22 V ∠  -64o

12 V ∠  35o

15 V ∠  0o

Figure 2.40: Polarity of E2 (12V) is reversed.

Note how the 12 volt supply’s phase angle is still referred to as 35o, even though the leads
have been reversed. Remember that the phase angle of any voltage drop is stated in reference
to its noted polarity. Even though the angle is still written as 35o, the vector will be drawn
180o opposite of what it was before: (Figure 2.41)
The resultant (sum) vector should begin at the upper-left point (origin of the 22 volt vector)
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22 ∠  -64o

12 ∠  35o (reversed) = 12 ∠  215o

or
-12 ∠  35o

15 ∠  0o

Figure 2.41: Direction of E2 is reversed.

and terminate at the right arrow tip of the 15 volt vector: (Figure 2.42)

resultant vector

22 ∠  -64o

12 ∠  35o (reversed) = 12 ∠  215o

or
-12 ∠ 35 ο

15 ∠  0o

Figure 2.42: Resultant is vector sum of voltage sources.

The connection reversal on the 12 volt supply can be represented in two different ways in



54 CHAPTER 2. COMPLEX NUMBERS

polar form: by an addition of 180o to its vector angle (making it 12 volts 6 215o), or a reversal
of sign on the magnitude (making it -12 volts 6 35o). Either way, conversion to rectangular
form yields the same result:

(reversed) =

or
=

=

-9.8298 - j6.8829 V

-9.8298 - j6.8829 V

12 V ∠  215o

-12 V ∠  35o

12 V ∠  35o

The resulting addition of voltages in rectangular form, then:

15 

9.6442 - j19.7735 V

+ j0        V

+

-9.8298 - j6.8829 V

14.8143 - j26.6564 V

In polar form, this equates to 30.4964 V 6 -60.9368o. Once again, we will use SPICE to
verify the results of our calculations:

ac voltage addition
v1 1 0 ac 15 0 sin
v2 1 2 ac 12 35 sin Note the reversal of node numbers 2 and 1
v3 3 2 ac 22 -64 sin to simulate the swapping of connections
r1 3 0 10k
.ac lin 1 60 60
.print ac v(3,0) vp(3,0)
.end

freq v(3) vp(3)
6.000E+01 3.050E+01 -6.094E+01

• REVIEW:

• All the laws and rules of DC circuits apply to AC circuits, with the exception of power
calculations (Joule’s Law), so long as all values are expressed andmanipulated in complex
form, and all voltages and currents are at the same frequency.

• When reversing the direction of a vector (equivalent to reversing the polarity of an AC
voltage source in relation to other voltage sources), it can be expressed in either of two
different ways: adding 180o to the angle, or reversing the sign of the magnitude.

• Meter measurements in an AC circuit correspond to the polar magnitudes of calculated
values. Rectangular expressions of complex quantities in an AC circuit have no direct,
empirical equivalent, although they are convenient for performing addition and subtrac-
tion, as Kirchhoff ’s Voltage and Current Laws require.
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2.9 Contributors

Contributors to this chapter are listed in chronological order of their contributions, from most
recent to first. See Appendix 2 (Contributor List) for dates and contact information.
Jason Starck (June 2000): HTML document formatting, which led to a much better-

looking second edition.
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