
Chapter 6

LADDER LOGIC

Contents

6.1 ”Ladder” diagrams . 135

6.2 Digital logic functions . 139

6.3 Permissive and interlock circuits . 144

6.4 Motor control circuits . 147

6.5 Fail-safe design . 150

6.6 Programmable logic controllers . 154

6.7 Contributors . 171

6.1 ”Ladder” diagrams

Ladder diagrams are specialized schematics commonly used to document industrial control
logic systems. They are called ”ladder” diagrams because they resemble a ladder, with two
vertical rails (supply power) and as many ”rungs” (horizontal lines) as there are control circuits
to represent. If we wanted to draw a simple ladder diagram showing a lamp that is controlled
by a hand switch, it would look like this:

L1 L2

1
Switch Lamp

The ”L1” and ”L2” designations refer to the two poles of a 120 VAC supply, unless otherwise
noted. L1 is the ”hot” conductor, and L2 is the grounded (”neutral”) conductor. These designa-
tions have nothing to do with inductors, just to make things confusing. The actual transformer
or generator supplying power to this circuit is omitted for simplicity. In reality, the circuit looks
something like this:

135

136 CHAPTER 6. LADDER LOGIC

L1 L2

1
Switch Lamp

To 480 volt AC
power source (typical)

step-down "control power"
transformer

120 VAC

fuse fuse

fuse

Typically in industrial relay logic circuits, but not always, the operating voltage for the
switch contacts and relay coils will be 120 volts AC. Lower voltage AC and even DC systems
are sometimes built and documented according to ”ladder” diagrams:

L1 L2

1
Switch Lamp

fuse
24 VDC

So long as the switch contacts and relay coils are all adequately rated, it really doesn’t
matter what level of voltage is chosen for the system to operate with.

Note the number ”1” on the wire between the switch and the lamp. In the real world, that
wire would be labeled with that number, using heat-shrink or adhesive tags, wherever it was
convenient to identify. Wires leading to the switch would be labeled ”L1” and ”1,” respectively.
Wires leading to the lamp would be labeled ”1” and ”L2,” respectively. These wire numbers
make assembly and maintenance very easy. Each conductor has its own unique wire number
for the control system that its used in. Wire numbers do not change at any junction or node,
even if wire size, color, or length changes going into or out of a connection point. Of course, it is
preferable to maintain consistent wire colors, but this is not always practical. What matters is
that any one, electrically continuous point in a control circuit possesses the same wire number.
Take this circuit section, for example, with wire #25 as a single, electrically continuous point
threading to many different devices:

6.1. ”LADDER” DIAGRAMS 137

25

25

25

25

25

25

25

25

In ladder diagrams, the load device (lamp, relay coil, solenoid coil, etc.) is almost always
drawn at the right-hand side of the rung. While it doesn’t matter electrically where the re-
lay coil is located within the rung, it does matter which end of the ladder’s power supply is
grounded, for reliable operation.

Take for instance this circuit:

L1 L2

1
Switch Lamp

120 VAC

Here, the lamp (load) is located on the right-hand side of the rung, and so is the ground
connection for the power source. This is no accident or coincidence; rather, it is a purposeful
element of good design practice. Suppose that wire #1 were to accidently come in contact with
ground, the insulation of that wire having been rubbed off so that the bare conductor came in
contact with grounded, metal conduit. Our circuit would now function like this:

138 CHAPTER 6. LADDER LOGIC

L1 L2

1
Switch Lamp

120 VAC

accidental ground

Lamp cannot light!

Fuse will blow
if switch is

closed!

With both sides of the lamp connected to ground, the lamp will be ”shorted out” and un-
able to receive power to light up. If the switch were to close, there would be a short-circuit,
immediately blowing the fuse.
However, consider what would happen to the circuit with the same fault (wire #1 coming

in contact with ground), except this time we’ll swap the positions of switch and fuse (L2 is still
grounded):

L1 L2

1
SwitchLamp

120 VAC

accidental ground

Lamp is energized! Switch has no
effect!

This time the accidental grounding of wire #1 will force power to the lamp while the switch
will have no effect. It is much safer to have a system that blows a fuse in the event of a
ground fault than to have a system that uncontrollably energizes lamps, relays, or solenoids

6.2. DIGITAL LOGIC FUNCTIONS 139

in the event of the same fault. For this reason, the load(s) must always be located nearest the
grounded power conductor in the ladder diagram.

• REVIEW:

• Ladder diagrams (sometimes called ”ladder logic”) are a type of electrical notation and
symbology frequently used to illustrate how electromechanical switches and relays are
interconnected.

• The two vertical lines are called ”rails” and attach to opposite poles of a power supply,
usually 120 volts AC. L1 designates the ”hot” AC wire and L2 the ”neutral” (grounded)
conductor.

• Horizontal lines in a ladder diagram are called ”rungs,” each one representing a unique
parallel circuit branch between the poles of the power supply.

• Typically, wires in control systems are marked with numbers and/or letters for identifica-
tion. The rule is, all permanently connected (electrically common) points must bear the
same label.

6.2 Digital logic functions

We can construct simply logic functions for our hypothetical lamp circuit, using multiple con-
tacts, and document these circuits quite easily and understandably with additional rungs to
our original ”ladder.” If we use standard binary notation for the status of the switches and
lamp (0 for unactuated or de-energized; 1 for actuated or energized), a truth table can be made
to show how the logic works:

L1 L2

B

A

A

B

A B Output
00

0 1
01

1 1

0
1

1
1

1

140 CHAPTER 6. LADDER LOGIC

Now, the lamp will come on if either contact A or contact B is actuated, because all it takes
for the lamp to be energized is to have at least one path for current from wire L1 to wire 1.
What we have is a simple OR logic function, implemented with nothing more than contacts
and a lamp.

We canmimic the AND logic function by wiring the two contacts in series instead of parallel:

L1 L2

BA

A

B

A B Output
00

0 1
01

1 1

0

1

1 2

0
0

Now, the lamp energizes only if contact A and contact B are simultaneously actuated. A
path exists for current from wire L1 to the lamp (wire 2) if and only if both switch contacts are
closed.

The logical inversion, or NOT, function can be performed on a contact input simply by using
a normally-closed contact instead of a normally-open contact:

L1 L2

A

A

1

A Output
0 1
1 0

Now, the lamp energizes if the contact is not actuated, and de-energizes when the contact
is actuated.

If we take our OR function and invert each ”input” through the use of normally-closed
contacts, we will end up with a NAND function. In a special branch of mathematics known
as Boolean algebra, this effect of gate function identity changing with the inversion of input
signals is described by DeMorgan’s Theorem, a subject to be explored in more detail in a later
chapter.

6.2. DIGITAL LOGIC FUNCTIONS 141

L1 L2

B

A

A

B
A B Output

00
0 1

01
1 1 0

1

1
1

1

or

A

B

The lamp will be energized if either contact is unactuated. It will go out only if both contacts
are actuated simultaneously.
Likewise, if we take our AND function and invert each ”input” through the use of normally-

closed contacts, we will end up with a NOR function:

L1 L2

BA

A

B
A B Output

00
0 1

01
1 1 0

1

1

or

A

B

0
0

2

A pattern quickly reveals itself when ladder circuits are compared with their logic gate
counterparts:

142 CHAPTER 6. LADDER LOGIC

• Parallel contacts are equivalent to an OR gate.

• Series contacts are equivalent to an AND gate.

• Normally-closed contacts are equivalent to a NOT gate (inverter).

We can build combinational logic functions by grouping contacts in series-parallel arrange-
ments, as well. In the following example, we have an Exclusive-OR function built from a
combination of AND, OR, and inverter (NOT) gates:

L1 L2

BA

A

B
A B Output

00
0 1

01
1 1 0

1

1

or

A

B

0

2

3
A B

2

1

The top rung (NC contact A in series with NO contact B) is the equivalent of the top
NOT/AND gate combination. The bottom rung (NO contact A in series with NC contact B)
is the equivalent of the bottom NOT/AND gate combination. The parallel connection between
the two rungs at wire number 2 forms the equivalent of the OR gate, in allowing either rung 1
or rung 2 to energize the lamp.
To make the Exclusive-OR function, we had to use two contacts per input: one for direct

input and the other for ”inverted” input. The two ”A” contacts are physically actuated by the
same mechanism, as are the two ”B” contacts. The common association between contacts is
denoted by the label of the contact. There is no limit to how many contacts per switch can be
represented in a ladder diagram, as each new contact on any switch or relay (either normally-
open or normally-closed) used in the diagram is simply marked with the same label.
Sometimes, multiple contacts on a single switch (or relay) are designated by a compound

labels, such as ”A-1” and ”A-2” instead of two ”A” labels. This may be especially useful if

6.2. DIGITAL LOGIC FUNCTIONS 143

you want to specifically designate which set of contacts on each switch or relay is being used
for which part of a circuit. For simplicity’s sake, I’ll refrain from such elaborate labeling in
this lesson. If you see a common label for multiple contacts, you know those contacts are all
actuated by the same mechanism.

If we wish to invert the output of any switch-generated logic function, we must use a relay
with a normally-closed contact. For instance, if we want to energize a load based on the inverse,
or NOT, of a normally-open contact, we could do this:

L1 L2

A

1

A Output
0 1
1 0

A CR1

CR1

CR1
0
1

2

We will call the relay, ”control relay 1,” or CR1. When the coil of CR1 (symbolized with the
pair of parentheses on the first rung) is energized, the contact on the second rung opens, thus
de-energizing the lamp. From switch A to the coil of CR1, the logic function is noninverted.
The normally-closed contact actuated by relay coil CR1 provides a logical inverter function to
drive the lamp opposite that of the switch’s actuation status.

Applying this inversion strategy to one of our inverted-input functions created earlier, such
as the OR-to-NAND, we can invert the output with a relay to create a noninverted function:

144 CHAPTER 6. LADDER LOGIC

L1 L2

B

A

A

B
A B Output

00
0 1

01
1 1

1

or

A

B

CR1

CR1
2

0
0
0
1

From the switches to the coil of CR1, the logical function is that of a NAND gate. CR1’s
normally-closed contact provides one final inversion to turn the NAND function into an AND
function.

• REVIEW:

• Parallel contacts are logically equivalent to an OR gate.

• Series contacts are logically equivalent to an AND gate.

• Normally closed (N.C.) contacts are logically equivalent to a NOT gate.

• A relay must be used to invert the output of a logic gate function, while simple normally-
closed switch contacts are sufficient to represent inverted gate inputs.

6.3 Permissive and interlock circuits

A practical application of switch and relay logic is in control systems where several process
conditions have to be met before a piece of equipment is allowed to start. A good example of
this is burner control for large combustion furnaces. In order for the burners in a large furnace
to be started safely, the control system requests ”permission” from several process switches,
including high and low fuel pressure, air fan flow check, exhaust stack damper position, access

6.3. PERMISSIVE AND INTERLOCK CIRCUITS 145

door position, etc. Each process condition is called a permissive, and each permissive switch
contact is wired in series, so that if any one of them detects an unsafe condition, the circuit will
be opened:

L1 L2

low fuel
pressure

high fuel
pressure

minimum
air flow open

damper CR1

green

red

CR1

CR1

Green light = conditions met: safe to start

Red light = conditions not met: unsafe to start

If all permissive conditions are met, CR1 will energize and the green lamp will be lit. In
real life, more than just a green lamp would be energized: usually a control relay or fuel valve
solenoid would be placed in that rung of the circuit to be energized when all the permissive
contacts were ”good:” that is, all closed. If any one of the permissive conditions are not met,
the series string of switch contacts will be broken, CR2 will de-energize, and the red lamp will
light.

Note that the high fuel pressure contact is normally-closed. This is because we want the
switch contact to open if the fuel pressure gets too high. Since the ”normal” condition of any
pressure switch is when zero (low) pressure is being applied to it, and we want this switch to
open with excessive (high) pressure, we must choose a switch that is closed in its normal state.

Another practical application of relay logic is in control systems where we want to ensure
two incompatible events cannot occur at the same time. An example of this is in reversible mo-
tor control, where two motor contactors are wired to switch polarity (or phase sequence) to an
electric motor, and we don’t want the forward and reverse contactors energized simultaneously:

146 CHAPTER 6. LADDER LOGIC

motor
3-phase

AC
power

M1

M2

M1 = forward

M2 = reverse

A

B

C

1

2

3

When contactor M1 is energized, the 3 phases (A, B, and C) are connected directly to termi-
nals 1, 2, and 3 of the motor, respectively. However, when contactor M2 is energized, phases A
and B are reversed, A going to motor terminal 2 and B going to motor terminal 1. This reversal
of phase wires results in the motor spinning the opposite direction. Let’s examine the control
circuit for these two contactors:

L1 L2

forward M1 OL

M2reverse

1

2

3

Take note of the normally-closed ”OL” contact, which is the thermal overload contact acti-
vated by the ”heater” elements wired in series with each phase of the AC motor. If the heaters
get too hot, the contact will change from its normal (closed) state to being open, which will
prevent either contactor from energizing.

This control system will work fine, so long as no one pushes both buttons at the same time.
If someone were to do that, phases A and B would be short-circuited together by virtue of the
fact that contactor M1 sends phases A and B straight to the motor and contactor M2 reverses
them; phase A would be shorted to phase B and vice versa. Obviously, this is a bad control
system design!

To prevent this occurrence from happening, we can design the circuit so that the energiza-
tion of one contactor prevents the energization of the other. This is called interlocking, and it
is accomplished through the use of auxiliary contacts on each contactor, as such:

6.4. MOTOR CONTROL CIRCUITS 147

L1 L2

forward M1 OL

M2reverse

1

2

3

M1

M2
4

5

Now, whenM1 is energized, the normally-closed auxiliary contact on the second rung will be
open, thus preventing M2 from being energized, even if the ”Reverse” pushbutton is actuated.
Likewise, M1’s energization is prevented when M2 is energized. Note, as well, how additional
wire numbers (4 and 5) were added to reflect the wiring changes.

It should be noted that this is not the only way to interlock contactors to prevent a short-
circuit condition. Some contactors come equipped with the option of a mechanical interlock: a
lever joining the armatures of two contactors together so that they are physically prevented
from simultaneous closure. For additional safety, electrical interlocks may still be used, and
due to the simplicity of the circuit there is no good reason not to employ them in addition to
mechanical interlocks.

• REVIEW:

• Switch contacts installed in a rung of ladder logic designed to interrupt a circuit if cer-
tain physical conditions are not met are called permissive contacts, because the system
requires permission from these inputs to activate.

• Switch contacts designed to prevent a control system from taking two incompatible ac-
tions at once (such as powering an electric motor forward and backward simultaneously)
are called interlocks.

6.4 Motor control circuits

The interlock contacts installed in the previous section’s motor control circuit work fine, but
the motor will run only as long as each pushbutton switch is held down. If we wanted to keep
the motor running even after the operator takes his or her hand off the control switch(es),
we could change the circuit in a couple of different ways: we could replace the pushbutton
switches with toggle switches, or we could add some more relay logic to ”latch” the control
circuit with a single, momentary actuation of either switch. Let’s see how the second approach
is implemented, since it is commonly used in industry:

148 CHAPTER 6. LADDER LOGIC

L1 L2

forward M1 OL

M2reverse

1

2

3

M1

M2
4

5

M1

M2

When the ”Forward” pushbutton is actuated, M1 will energize, closing the normally-open
auxiliary contact in parallel with that switch. When the pushbutton is released, the closed M1

auxiliary contact will maintain current to the coil of M1, thus latching the ”Forward” circuit in
the ”on” state. The same sort of thing will happen when the ”Reverse” pushbutton is pressed.
These parallel auxiliary contacts are sometimes referred to as seal-in contacts, the word ”seal”
meaning essentially the same thing as the word latch.

However, this creates a new problem: how to stop the motor! As the circuit exists right now,
the motor will run either forward or backward once the corresponding pushbutton switch is
pressed, and will continue to run as long as there is power. To stop either circuit (forward or
backward), we require some means for the operator to interrupt power to the motor contactors.
We’ll call this new switch, Stop:

L1 L2

forward M1 OL

M2reverse

1

2

3

M1

M2
4

5

M1

M2

stop
6

6

6

6

6.4. MOTOR CONTROL CIRCUITS 149

Now, if either forward or reverse circuits are latched, they may be ”unlatched” by momen-
tarily pressing the ”Stop” pushbutton, which will open either forward or reverse circuit, de-
energizing the energized contactor, and returning the seal-in contact to its normal (open) state.
The ”Stop” switch, having normally-closed contacts, will conduct power to either forward or re-
verse circuits when released.

So far, so good. Let’s consider another practical aspect of our motor control scheme before we
quit adding to it. If our hypothetical motor turned a mechanical load with a lot of momentum,
such as a large air fan, the motor might continue to coast for a substantial amount of time
after the stop button had been pressed. This could be problematic if an operator were to try
to reverse the motor direction without waiting for the fan to stop turning. If the fan was
still coasting forward and the ”Reverse” pushbutton was pressed, the motor would struggle to
overcome that inertia of the large fan as it tried to begin turning in reverse, drawing excessive
current and potentially reducing the life of the motor, drive mechanisms, and fan. What we
might like to have is some kind of a time-delay function in this motor control system to prevent
such a premature startup from happening.

Let’s begin by adding a couple of time-delay relay coils, one in parallel with each motor
contactor coil. If we use contacts that delay returning to their normal state, these relays will
provide us a ”memory” of which direction the motor was last powered to turn. What we want
each time-delay contact to do is to open the starting-switch leg of the opposite rotation circuit
for several seconds, while the fan coasts to a halt.

L1 L2

forward M1 OL

M2reverse

1

2

3

M1

M2
4

5

M1

M2

stop
6

6

6

6

TD1

TD2

TD2

TD1

7

8

If the motor has been running in the forward direction, both M1 and TD1 will have been
energized. This being the case, the normally-closed, timed-closed contact of TD1 between wires
8 and 5 will have immediately opened the moment TD1 was energized. When the stop button
is pressed, contact TD1 waits for the specified amount of time before returning to its normally-
closed state, thus holding the reverse pushbutton circuit open for the duration so M2 can’t
be energized. When TD1 times out, the contact will close and the circuit will allow M2 to be
energized, if the reverse pushbutton is pressed. In like manner, TD2 will prevent the ”Forward”
pushbutton from energizing M1 until the prescribed time delay after M2 (and TD2) have been

150 CHAPTER 6. LADDER LOGIC

de-energized.
The careful observer will notice that the time-interlocking functions of TD1 and TD2 ren-

der the M1 and M2 interlocking contacts redundant. We can get rid of auxiliary contacts M1

and M2 for interlocks and just use TD1 and TD2’s contacts, since they immediately open when
their respective relay coils are energized, thus ”locking out” one contactor if the other is ener-
gized. Each time delay relay will serve a dual purpose: preventing the other contactor from
energizing while the motor is running, and preventing the same contactor from energizing un-
til a prescribed time after motor shutdown. The resulting circuit has the advantage of being
simpler than the previous example:

L1 L2

forward M1 OL

M2reverse

1

2

34

5

M1

M2

stop
6

6

6

6

TD1

TD2

TD2

TD1

• REVIEW:

• Motor contactor (or ”starter”) coils are typically designated by the letter ”M” in ladder
logic diagrams.

• Continuous motor operation with a momentary ”start” switch is possible if a normally-
open ”seal-in” contact from the contactor is connected in parallel with the start switch, so
that once the contactor is energized it maintains power to itself and keeps itself ”latched”
on.

• Time delay relays are commonly used in large motor control circuits to prevent the motor
from being started (or reversed) until a certain amount of time has elapsed from an event.

6.5 Fail-safe design

Logic circuits, whether comprised of electromechanical relays or solid-state gates, can be built
in many different ways to perform the same functions. There is usually no one ”correct” way to
design a complex logic circuit, but there are usually ways that are better than others.

6.5. FAIL-SAFE DESIGN 151

In control systems, safety is (or at least should be) an important design priority. If there
are multiple ways in which a digital control circuit can be designed to perform a task, and one
of those ways happens to hold certain advantages in safety over the others, then that design is
the better one to choose.

Let’s take a look at a simple system and consider how it might be implemented in relay
logic. Suppose that a large laboratory or industrial building is to be equipped with a fire alarm
system, activated by any one of several latching switches installed throughout the facility.
The system should work so that the alarm siren will energize if any one of the switches is
actuated. At first glance it seems as though the relay logic should be incredibly simple: just
use normally-open switch contacts and connect them all in parallel with each other:

L1 L2

sirenswitch 1

switch 2

switch 3

switch 4

Essentially, this is the OR logic function implemented with four switch inputs. We could
expand this circuit to include any number of switch inputs, each new switch being added to the
parallel network, but I’ll limit it to four in this example to keep things simple. At any rate, it
is an elementary system and there seems to be little possibility of trouble.

Except in the event of a wiring failure, that is. The nature of electric circuits is such that
”open” failures (open switch contacts, broken wire connections, open relay coils, blown fuses,
etc.) are statistically more likely to occur than any other type of failure. With that in mind, it
makes sense to engineer a circuit to be as tolerant as possible to such a failure. Let’s suppose
that a wire connection for Switch #2 were to fail open:

152 CHAPTER 6. LADDER LOGIC

L1 L2

sirenswitch 1

switch 2

switch 3

switch 4

open wire connection!

If this failure were to occur, the result would be that Switch #2 would no longer energize the
siren if actuated. This, obviously, is not good in a fire alarm system. Unless the system were
regularly tested (a good idea anyway), no one would know there was a problem until someone
tried to use that switch in an emergency.

What if the system were re-engineered so as to sound the alarm in the event of an open
failure? That way, a failure in the wiring would result in a false alarm, a scenario much more
preferable than that of having a switch silently fail and not function when needed. In order
to achieve this design goal, we would have to re-wire the switches so that an open contact
sounded the alarm, rather than a closed contact. That being the case, the switches will have to
be normally-closed and in series with each other, powering a relay coil which then activates a
normally-closed contact for the siren:

L1 L2

switch 1

switch 2

switch 3

switch 4

CR1

CR1 siren

When all switches are unactuated (the regular operating state of this system), relay CR1

will be energized, thus keeping contact CR1 open, preventing the siren from being powered.
However, if any of the switches are actuated, relay CR1 will de-energize, closing contact CR1

and sounding the alarm. Also, if there is a break in the wiring anywhere in the top rung of the
circuit, the alarm will sound. When it is discovered that the alarm is false, the workers in the
facility will know that something failed in the alarm system and that it needs to be repaired.

Granted, the circuit is more complex than it was before the addition of the control relay, and
the system could still fail in the ”silent” mode with a broken connection in the bottom rung,

6.5. FAIL-SAFE DESIGN 153

but its still a safer design than the original circuit, and thus preferable from the standpoint of
safety.
This design of circuit is referred to as fail-safe, due to its intended design to default to

the safest mode in the event of a common failure such as a broken connection in the switch
wiring. Fail-safe design always starts with an assumption as to the most likely kind of wiring or
component failure, and then tries to configure things so that such a failure will cause the circuit
to act in the safest way, the ”safest way” being determined by the physical characteristics of
the process.
Take for example an electrically-actuated (solenoid) valve for turning on cooling water to

a machine. Energizing the solenoid coil will move an armature which then either opens or
closes the valve mechanism, depending on what kind of valve we specify. A spring will return
the valve to its ”normal” position when the solenoid is de-energized. We already know that
an open failure in the wiring or solenoid coil is more likely than a short or any other type of
failure, so we should design this system to be in its safest mode with the solenoid de-energized.
If its cooling water we’re controlling with this valve, chances are it is safer to have the

cooling water turn on in the event of a failure than to shut off, the consequences of a machine
running without coolant usually being severe. This means we should specify a valve that turns
on (opens up) when de-energized and turns off (closes down) when energized. This may seem
”backwards” to have the valve set up this way, but it will make for a safer system in the end.
One interesting application of fail-safe design is in the power generation and distribution

industry, where large circuit breakers need to be opened and closed by electrical control sig-
nals from protective relays. If a 50/51 relay (instantaneous and time overcurrent) is going to
command a circuit breaker to trip (open) in the event of excessive current, should we design it
so that the relay closes a switch contact to send a ”trip” signal to the breaker, or opens a switch
contact to interrupt a regularly ”on” signal to initiate a breaker trip? We know that an open
connection will be the most likely to occur, but what is the safest state of the system: breaker
open or breaker closed?
At first, it would seem that it would be safer to have a large circuit breaker trip (open up

and shut off power) in the event of an open fault in the protective relay control circuit, just
like we had the fire alarm system default to an alarm state with any switch or wiring failure.
However, things are not so simple in the world of high power. To have a large circuit breaker
indiscriminately trip open is no small matter, especially when customers are depending on
the continued supply of electric power to supply hospitals, telecommunications systems, water
treatment systems, and other important infrastructures. For this reason, power system engi-
neers have generally agreed to design protective relay circuits to output a closed contact signal
(power applied) to open large circuit breakers, meaning that any open failure in the control
wiring will go unnoticed, simply leaving the breaker in the status quo position.
Is this an ideal situation? Of course not. If a protective relay detects an overcurrent condi-

tion while the control wiring is failed open, it will not be able to trip open the circuit breaker.
Like the first fire alarm system design, the ”silent” failure will be evident only when the system
is needed. However, to engineer the control circuitry the other way – so that any open failure
would immediately shut the circuit breaker off, potentially blacking out large potions of the
power grid – really isn’t a better alternative.
An entire book could be written on the principles and practices of good fail-safe system

design. At least here, you know a couple of the fundamentals: that wiring tends to fail open
more often than shorted, and that an electrical control system’s (open) failure mode should be

154 CHAPTER 6. LADDER LOGIC

such that it indicates and/or actuates the real-life process in the safest alternative mode. These
fundamental principles extend to non-electrical systems as well: identify the most common
mode of failure, then engineer the system so that the probable failure mode places the system
in the safest condition.

• REVIEW:

• The goal of fail-safe design is to make a control system as tolerant as possible to likely
wiring or component failures.

• The most common type of wiring and component failure is an ”open” circuit, or broken
connection. Therefore, a fail-safe system should be designed to default to its safest mode
of operation in the case of an open circuit.

6.6 Programmable logic controllers

Before the advent of solid-state logic circuits, logical control systems were designed and built
exclusively around electromechanical relays. Relays are far from obsolete in modern design,
but have been replaced in many of their former roles as logic-level control devices, relegated
most often to those applications demanding high current and/or high voltage switching.
Systems and processes requiring ”on/off” control abound in modern commerce and industry,

but such control systems are rarely built from either electromechanical relays or discrete logic
gates. Instead, digital computers fill the need, which may be programmed to do a variety of
logical functions.
In the late 1960’s an American company named Bedford Associates released a computing

device they called the MODICON. As an acronym, it meant Modular Digital Controller, and
later became the name of a company division devoted to the design, manufacture, and sale
of these special-purpose control computers. Other engineering firms developed their own ver-
sions of this device, and it eventually came to be known in non-proprietary terms as a PLC, or
Programmable Logic Controller. The purpose of a PLC was to directly replace electromechan-
ical relays as logic elements, substituting instead a solid-state digital computer with a stored
program, able to emulate the interconnection of many relays to perform certain logical tasks.
A PLC has many ”input” terminals, through which it interprets ”high” and ”low” logical

states from sensors and switches. It also has many output terminals, through which it out-
puts ”high” and ”low” signals to power lights, solenoids, contactors, small motors, and other
devices lending themselves to on/off control. In an effort to make PLCs easy to program, their
programming language was designed to resemble ladder logic diagrams. Thus, an industrial
electrician or electrical engineer accustomed to reading ladder logic schematics would feel com-
fortable programming a PLC to perform the same control functions.
PLCs are industrial computers, and as such their input and output signals are typically 120

volts AC, just like the electromechanical control relays they were designed to replace. Although
some PLCs have the ability to input and output low-level DC voltage signals of the magnitude
used in logic gate circuits, this is the exception and not the rule.
Signal connection and programming standards vary somewhat between different models of

PLC, but they are similar enough to allow a ”generic” introduction to PLC programming here.
The following illustration shows a simple PLC, as it might appear from a front view. Two screw

6.6. PROGRAMMABLE LOGIC CONTROLLERS 155

terminals provide connection to 120 volts AC for powering the PLC’s internal circuitry, labeled
L1 and L2. Six screw terminals on the left-hand side provide connection to input devices, each
terminal representing a different input ”channel” with its own ”X” label. The lower-left screw
terminal is a ”Common” connection, which is generally connected to L2 (neutral) of the 120
VAC power source.

PLC

X1

X2

X3

X4

X5

X6

L1 L2 Y1

Y2

Y3

Y4

Y5

Y6
Programming

port
Common Source

Inside the PLC housing, connected between each input terminal and the Common terminal,
is an opto-isolator device (Light-Emitting Diode) that provides an electrically isolated ”high”
logic signal to the computer’s circuitry (a photo-transistor interprets the LED’s light) when
there is 120 VAC power applied between the respective input terminal and the Common termi-
nal. An indicating LED on the front panel of the PLC gives visual indication of an ”energized”
input:

PLC

L1 L2 Y1

Y2

Y3

Y4

Y5

Y6
Programming

portCommon Source

L1 L2

X2

X3

X4

X5

X6

V Ω

COMA

120 V
Input X1 energized

Output signals are generated by the PLC’s computer circuitry activating a switching device
(transistor, TRIAC, or even an electromechanical relay), connecting the ”Source” terminal to

156 CHAPTER 6. LADDER LOGIC

any of the ”Y-” labeled output terminals. The ”Source” terminal, correspondingly, is usually
connected to the L1 side of the 120 VAC power source. As with each input, an indicating LED
on the front panel of the PLC gives visual indication of an ”energized” output:

PLC

L1 L2
Y2

Y3

Y4

Y5

Y6
Programming

port
Common Source

L1 L2

X2

X3

X4

X5

X6

V Ω

COMA

120 V

X1

Output Y1 energized

In this way, the PLC is able to interface with real-world devices such as switches and
solenoids.

The actual logic of the control system is established inside the PLC by means of a computer
program. This program dictates which output gets energized under which input conditions.
Although the program itself appears to be a ladder logic diagram, with switch and relay sym-
bols, there are no actual switch contacts or relay coils operating inside the PLC to create the
logical relationships between input and output. These are imaginary contacts and coils, if
you will. The program is entered and viewed via a personal computer connected to the PLC’s
programming port.

Consider the following circuit and PLC program:

6.6. PROGRAMMABLE LOGIC CONTROLLERS 157

PLC

X1

X2

X3

X4

X5

X6

L1 L2 Y1

Y2

Y3

Y4

Y5

Y6
Programming

port
Common Source

L1 L2

Personal
computer

Programming
cable

X1 Y1

display

When the pushbutton switch is unactuated (unpressed), no power is sent to the X1 input of
the PLC. Following the program, which shows a normally-open X1 contact in series with a Y1
coil, no ”power” will be sent to the Y1 coil. Thus, the PLC’s Y1 output remains de-energized,
and the indicator lamp connected to it remains dark.

If the pushbutton switch is pressed, however, power will be sent to the PLC’s X1 input. Any
and all X1 contacts appearing in the program will assume the actuated (non-normal) state,
as though they were relay contacts actuated by the energizing of a relay coil named ”X1”. In
this case, energizing the X1 input will cause the normally-open X1 contact will ”close,” sending
”power” to the Y1 coil. When the Y1 coil of the program ”energizes,” the real Y1 output will
become energized, lighting up the lamp connected to it:

158 CHAPTER 6. LADDER LOGIC

PLC

X1

X2

X3

X4

X5

X6

L1 L2 Y1

Y2

Y3

Y4

Y5

Y6
Programming

port
Common Source

L1 L2

Personal
computer

Programming
cable

X1 Y1

display

switch actuated

lamp
lights!

contact and coil symbols
turn color, indicating "power"
conducted through "circuit"

It must be understood that the X1 contact, Y1 coil, connecting wires, and ”power” appearing
in the personal computer’s display are all virtual. They do not exist as real electrical compo-
nents. They exist as commands in a computer program – a piece of software only – that just
happens to resemble a real relay schematic diagram.
Equally important to understand is that the personal computer used to display and edit

the PLC’s program is not necessary for the PLC’s continued operation. Once a program has
been loaded to the PLC from the personal computer, the personal computer may be unplugged
from the PLC, and the PLC will continue to follow the programmed commands. I include the
personal computer display in these illustrations for your sake only, in aiding to understand the
relationship between real-life conditions (switch closure and lamp status) and the program’s
status (”power” through virtual contacts and virtual coils).
The true power and versatility of a PLC is revealed when we want to alter the behavior

of a control system. Since the PLC is a programmable device, we can alter its behavior by
changing the commands we give it, without having to reconfigure the electrical components
connected to it. For example, suppose we wanted to make this switch-and-lamp circuit function
in an inverted fashion: push the button to make the lamp turn off, and release it to make it
turn on. The ”hardware” solution would require that a normally-closed pushbutton switch be

6.6. PROGRAMMABLE LOGIC CONTROLLERS 159

substituted for the normally-open switch currently in place. The ”software” solution is much
easier: just alter the program so that contact X1 is normally-closed rather than normally-open.

In the following illustration, we have the altered system shown in the state where the
pushbutton is unactuated (not being pressed):

PLC

X1

X2

X3

X4

X5

X6

L1 L2 Y1

Y2

Y3

Y4

Y5

Y6
Programming

port
Common Source

L1 L2

Personal
computer

Programming
cable

X1 Y1

display

lamp
lights!

colored components show
"power" conducted through
the "circuit" with contact X1

in its "normal" status

In this next illustration, the switch is shown actuated (pressed):

160 CHAPTER 6. LADDER LOGIC

PLC

X1

X2

X3

X4

X5

X6

L1 L2 Y1

Y2

Y3

Y4

Y5

Y6
Programming

port
Common Source

L1 L2

Personal
computer

Programming
cable

X1 Y1

display

switch actuated

lamp is
dark

un-colored components
show no "continuity" in
the "circuit"

One of the advantages of implementing logical control in software rather than in hardware
is that input signals can be re-used as many times in the program as is necessary. For example,
take the following circuit and program, designed to energize the lamp if at least two of the three
pushbutton switches are simultaneously actuated:

6.6. PROGRAMMABLE LOGIC CONTROLLERS 161

PLC

X1

X2

X3

X4

X5

X6

L1 L2 Y1

Y2

Y3

Y4

Y5

Y6
Programming

port
Common Source

L1 L2

X1 Y1X2

X2 X3

X1 X3

To build an equivalent circuit using electromechanical relays, three relays with two normally-
open contacts each would have to be used, to provide two contacts per input switch. Using a
PLC, however, we can program as many contacts as we wish for each ”X” input without adding
additional hardware, since each input and each output is nothing more than a single bit in the
PLC’s digital memory (either 0 or 1), and can be recalled as many times as necessary.

Furthermore, since each output in the PLC is nothing more than a bit in its memory as
well, we can assign contacts in a PLC program ”actuated” by an output (Y) status. Take for
instance this next system, a motor start-stop control circuit:

162 CHAPTER 6. LADDER LOGIC

PLC

X1

X2

X3

X4

X5

X6

L1 L2 Y1

Y2

Y3

Y4

Y5

Y6
Programming

port
Common Source

L1 L2

X1 Y1X2

Y1

Motor
start

Motor
stop

M1

Motor
contactor

The pushbutton switch connected to input X1 serves as the ”Start” switch, while the switch
connected to input X2 serves as the ”Stop.” Another contact in the program, named Y1, uses
the output coil status as a seal-in contact, directly, so that the motor contactor will continue to
be energized after the ”Start” pushbutton switch is released. You can see the normally-closed
contact X2 appear in a colored block, showing that it is in a closed (”electrically conducting”)
state.

If we were to press the ”Start” button, input X1 would energize, thus ”closing” the X1 contact
in the program, sending ”power” to the Y1 ”coil,” energizing the Y1 output and applying 120
volt AC power to the real motor contactor coil. The parallel Y1 contact will also ”close,” thus
latching the ”circuit” in an energized state:

6.6. PROGRAMMABLE LOGIC CONTROLLERS 163

PLC

X1

X2

X3

X4

X5

X6

L1 L2 Y1

Y2

Y3

Y4

Y5

Y6
Programming

port
Common Source

L1 L2

X1 Y1X2

Y1

Motor
start

Motor
stop

M1

Motor
contactor

(actuated)

(energized)

Now, if we release the ”Start” pushbutton, the normally-open X1 ”contact” will return to its
”open” state, but the motor will continue to run because the Y1 seal-in ”contact” continues to
provide ”continuity” to ”power” coil Y1, thus keeping the Y1 output energized:

164 CHAPTER 6. LADDER LOGIC

PLC

X1

X2

X3

X4

X5

X6

L1 L2 Y1

Y2

Y3

Y4

Y5

Y6
Programming

port
Common Source

L1 L2

X1 Y1X2

Y1

Motor
start

Motor
stop

M1

Motor
contactor

(energized)

(released)

To stop the motor, we must momentarily press the ”Stop” pushbutton, which will energize
the X2 input and ”open” the normally-closed ”contact,” breaking continuity to the Y1 ”coil:”

6.6. PROGRAMMABLE LOGIC CONTROLLERS 165

PLC

X1

X2

X3

X4

X5

X6

L1 L2 Y1

Y2

Y3

Y4

Y5

Y6
Programming

port
Common Source

L1 L2

X1 Y1X2

Y1

Motor
start

Motor
stop

M1

Motor
contactor

(actuated)

When the ”Stop” pushbutton is released, input X2 will de-energize, returning ”contact” X2 to
its normal, ”closed” state. The motor, however, will not start again until the ”Start” pushbutton
is actuated, because the ”seal-in” of Y1 has been lost:

166 CHAPTER 6. LADDER LOGIC

PLC

X1

X2

X3

X4

X5

X6

L1 L2 Y1

Y2

Y3

Y4

Y5

Y6
Programming

port
Common Source

L1 L2

X1 Y1X2

Y1

Motor
start

Motor
stop

M1

Motor
contactor

(released)

An important point to make here is that fail-safe design is just as important in PLC-
controlled systems as it is in electromechanical relay-controlled systems. One should always
consider the effects of failed (open) wiring on the device or devices being controlled. In this
motor control circuit example, we have a problem: if the input wiring for X2 (the ”Stop” switch)
were to fail open, there would be no way to stop the motor!

The solution to this problem is a reversal of logic between the X2 ”contact” inside the PLC
program and the actual ”Stop” pushbutton switch:

6.6. PROGRAMMABLE LOGIC CONTROLLERS 167

PLC

X1

X2

X3

X4

X5

X6

L1 L2 Y1

Y2

Y3

Y4

Y5

Y6
Programming

port
Common Source

L1 L2

X1 Y1X2

Y1

Motor
start

Motor
stop

M1

Motor
contactor

When the normally-closed ”Stop” pushbutton switch is unactuated (not pressed), the PLC’s
X2 input will be energized, thus ”closing” the X2 ”contact” inside the program. This allows
the motor to be started when input X1 is energized, and allows it to continue to run when the
”Start” pushbutton is no longer pressed. When the ”Stop” pushbutton is actuated, input X2
will de-energize, thus ”opening” the X2 ”contact” inside the PLC program and shutting off the
motor. So, we see there is no operational difference between this new design and the previous
design.
However, if the input wiring on input X2 were to fail open, X2 input would de-energize in

the same manner as when the ”Stop” pushbutton is pressed. The result, then, for a wiring
failure on the X2 input is that the motor will immediately shut off. This is a safer design
than the one previously shown, where a ”Stop” switch wiring failure would have resulted in an
inability to turn off the motor.
In addition to input (X) and output (Y) program elements, PLCs provide ”internal” coils and

contacts with no intrinsic connection to the outside world. These are used much the same as
”control relays” (CR1, CR2, etc.) are used in standard relay circuits: to provide logic signal
inversion when necessary.
To demonstrate how one of these ”internal” relays might be used, consider the following

168 CHAPTER 6. LADDER LOGIC

example circuit and program, designed to emulate the function of a three-input NAND gate.
Since PLC program elements are typically designed by single letters, I will call the internal
control relay ”C1” rather than ”CR1” as would be customary in a relay control circuit:

PLC

X1

X2

X3

X4

X5

X6

L1 L2 Y1

Y2

Y3

Y4

Y5

Y6
Programming

port
Common Source

L1 L2

X1

Y1

X2 X3 C1

C1

lamp
lights!

In this circuit, the lamp will remain lit so long as any of the pushbuttons remain unactuated
(unpressed). To make the lamp turn off, we will have to actuate (press) all three switches, like
this:

6.6. PROGRAMMABLE LOGIC CONTROLLERS 169

PLC

X1

X2

X3

X4

X5

X6

L1 L2 Y1

Y2

Y3

Y4

Y5

Y6
Programming

port
Common Source

L1 L2

X1

Y1

X2 X3 C1

C1

All three switches actuated

lamp is
dark

This section on programmable logic controllers illustrates just a small sample of their ca-
pabilities. As computers, PLCs can perform timing functions (for the equivalent of time-delay
relays), drum sequencing, and other advanced functions with far greater accuracy and reliabil-
ity than what is possible using electromechanical logic devices. Most PLCs have the capacity
for far more than six inputs and six outputs. The following photograph shows several input
and output modules of a single Allen-Bradley PLC.

170 CHAPTER 6. LADDER LOGIC

With each module having sixteen ”points” of either input or output, this PLC has the ability
to monitor and control dozens of devices. Fit into a control cabinet, a PLC takes up little room,
especially considering the equivalent space that would be needed by electromechanical relays
to perform the same functions:

One advantage of PLCs that simply cannot be duplicated by electromechanical relays is
remote monitoring and control via digital computer networks. Because a PLC is nothing more
than a special-purpose digital computer, it has the ability to communicate with other comput-
ers rather easily. The following photograph shows a personal computer displaying a graphic
image of a real liquid-level process (a pumping, or ”lift,” station for a municipal wastewater
treatment system) controlled by a PLC. The actual pumping station is located miles away from

6.7. CONTRIBUTORS 171

the personal computer display:

6.7 Contributors

Contributors to this chapter are listed in chronological order of their contributions, from most
recent to first. See Appendix 2 (Contributor List) for dates and contact information.
Roger Hollingsworth (May 2003): Suggested a way to make the PLCmotor control circuit

fail-safe.

172 CHAPTER 6. LADDER LOGIC

